

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE HIDALGO EXAMEN DE PRESELECCIÓN-OLIMPIADA ESTATAL DE QUÍMICA **NOVIEMBRE 30, 2013**

INSTRUCCIONES

- 1. Antes de iniciar el examen escribe en la hoja de respuestas el número único de registro (NUR) que te fue proporcionado al momento de la inscripción, sin escribir tu nombre.
- 2. Encontrarás una tabla periódica que podrías necesitar durante el examen. No se permite el uso de tablas adicionales o formularios.
- 3. Sólo es permitido el uso de calculadoras científicas no programables.
- 4. Este examen consta de 50 preguntas de opción múltiple que deberás completar en no más de 180 minutos.
- 5. Sólo hay una respuesta correcta (de 4 opciones) para cada pregunta. Elige la que desde tu punto de vista sea más razonable, o bien que se acerque más al valor que has calculado.

:Mucho Éxito!

CONSTANTES Y FÓRMULAS							
Número de Avogadro	$N_A = 6.022 \times 10^{23}$	Energía	$E = hv = \frac{hc}{\lambda} = hc\overline{v}$				
1 Å	1 × 10 ⁻¹⁰ m	Ley de los gases ideales	PV = n RT; n = núm. moles				
Constante de Planck	$h = 6.626 \times 10^{-34} \text{ J s}$	Ley de los gases a presión constante	$\frac{V_1}{T_1} = \frac{V_2}{T_2}$				
Velocidad de la luz	$c = 3.0 \times 10^8 \mathrm{m \ s^{-1}}$	Presiones parciales	$PT = P1 + P2 + \dots + Pn$				
Cero de la escala Celsius	273.15 K	Potencial de hidrógeno	$pH = -\log[H^+]$				
Constante de los gases (R)	8.314 J K ⁻¹ mol ⁻¹ = 0.082 atm L mol ⁻¹ K ⁻¹ = 8.314 kPa L mol ⁻¹ K ⁻¹						

1.	l. El número de fases existentes en la mezcla etanol-metanol es:							
	(A) 1	(B) 2	(C) 3	(D) 0				
2.	Los átomos de un elemento quí	mico tienen 15 electrones. El e	elemento "E", es un:					

(A) Metal (B) No metal (C) Semiconductor (D) Metal de transición

3. El elemento cuyos átomos tienen un valor de Z= 117 recientemente descubierto debe: (A) Ser un halógeno (B) Tener 7 electrones de (C) Tener una configuración de (D) Tener todas las valencia valencia 7s²7p⁵ propiedades anteriores

4. El número de átomos de oxígeno que existen en 17.3 g de Fe₂(SO₄)₃ es: (A) 2.61 × 10 ²² átomos (B) 3.13 × 10 ²³ átomos (C) 1.04×10^{22} átomos (D) 12.0 átomos

5. La especie X tiene 12 protones, 13 neutrones y 12 electrones; la especie Z tiene 12 protones, 13 neutrones y 10 electrones. Por lo tanto:

(A) X y Z son (B) X es un átomo y Z es el ión 2+ de X (C) X v Z son iones con (D) **X** y **Z** son isótopos diferentes cargas Isoelectrónicos

6. ¿Cuál es el número total de orientaciones espaciales de los orbitales atómicos asociados al número cuántico principal n=3? (A) 2 (B) 3 (C) 5 (D) 9

7. ¿Cuál es la longitud de onda λ (en Å) de la radiación electromagnética emitida por una lámpara de molibdeno, si la frecuencia de la radiación (v) es de 4.2×10^{-18} s⁻¹?

8. Un ión es un átomo que ha perdido o ganado electrones para tener una carga asociada. Describe la composición de los

(C) 7.1 × 10 ¹ Å

(D) 7.1 × 10 ⁻¹ Å

(B) 7.1 × 10 ⁻² Å

(A) $0.71 \times 10^{-1} \text{ Å}$

siguientes iones isotópicos, indicando el número de protones (p), neutrones (n) y electrones (e)

	i) $_{30}^{66}$ Zn ²⁺ ii) $_{33}^{75}$	As ³⁻ iii) ⁹³ ₄₁ Nb ³⁺	
(A)	(B)	(C)	(D)
i) 30p, 36n y 28e;	i) 30p, 28n y 36e;	i) 66p, 30n y 28e;	i) 30p, 36n y 30e;
ii) 33p, 42n y 36e;	ii) 33p, 36n y 42e;	ii) 75p, 33n y 36e;	ii) 33p, 42n y 33e;
iii) 41p, 52n y 38e	iii) 41p, 38n y 52e	iii) 93p, 41n y 38e	iii) 41p, 52n y 41e

9. Indica la terminación de la configuración electrónica que tendrá un elemento que esta en el periodo 3 y grupo 15. (A) $3s^23p^3$ (B) $3s^23p^5$ (C) $5s^25p^3$

(A) H₆Ag₄Fe₂S₂O₁₂

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE HIDALGO EXAMEN DE PRESELECCIÓN-OLIMPIADA ESTATAL DE QUÍMICA NOVIEMBRE 30, 2013

10.	De los siguie	entes con	npuestos	señala cu	ıál de e	ellos tie	ene la m	ayor n	nasa r	nolar	<u>.</u>						
	(A) ácido fo		•	(B) ácid							azufre		(D) c	arburo	de si	licio	
	¿Cuál de los menor energ											n en la	configu	ración	electi	rónic	a de
	` '	l m _l	m _s	(B) n	l 2	m/	m _s	(C)		l	m/	m _s	(D)			m/	m _s
	1 0	1	1/2	2	2	-1	-1/2		1	1	0	1/2		2 0	()	-1/2
2.	Ordene de fo		reciente l				b, I; de a					energía					
	(A) Sr > In	> I > Sb		(B) I > S	Sr > Sb	>		(C) I	> Sb	> In :	> Sr		(D) I	< Sb <	In <	Sr	
	¿Cuál de lo pares de ele							omo c	entral		ación	de pun			enor	núm	ero de
	(A) NF ₃			(B) IF ₃				(C) S	SeCl ₂				(D) I				
14.	Un enlace co	ovalente	sencillo e	es:													
	(A) Más dé que une	bil y más		(B) Más	débil y uno do		largo		Más fi que ui		y más ole	corto		vas fue ue uno			s largo
15	El enlace co	on mayor	carácter	iónico se	formar	á entre	ā.										
٠٠.	(A) K y Cl	on mayor	odraotor	(B) Li y		u ontre	<i>.</i>	(C) I	l y At				(D) L	i y F			
16.	Selecciona I		cia cuyo r	nombre y	fórmula	a estár	correct										
	(A) HS; Su hidróge			(B) Mg ₃ mag	N ₂ ; Nit Inesio	rito de			KNO₃ ootasi		ato de		(D) F	łClO ₂ ;	Ácido	per	clórico
17	l la mátada d	anuin na	ro lo pro	narasián (do ovía			on al le	horot	orio I	ıtilize l	a daaa	mnooi	nián tá	miaa	اماء	oloroto
	Un método de potasio. E					eno ga	356050 (en en id	aborat	OHO C	ııııza ı	a uesci	niposii	JIOH LEI	IIIICa	uer	Jorato
	(A) KCIO ₂			(B) KCI				(C) I	(CIO ₄				(D) K	CIO			
				• • • • • • • • • • • • • • • • • • • •								1 (1 44	20"		, l .
	Uno de los i es YBa ₂ Cu ₃ 0													esto 12	23" y	su to	ormula
	(A) 1 : 2 : 3) 1.00 : 3.				(C) 1.5			CHICO	1, Da y		.90 : 27	74.6 :	222	.1
												•	` '				
19.	¿Cuál es el (A) 8.80 %	porcentaj	e de yod			to Hg ₅	$(IO_6)_2$?	(C) (18.8 %	,			(D) 1	0.2.0/			
	(A) 0.00 %			(B) 17.5	70			(C)	10.0 %	0			(D) I	9.2 %			
	Considere la	siguiente	e informa	ción para	contes	star las	pregun	tas 20	y 21:								
	La disminuc últimos años																
	aviones de p	ropulsiór	n. a altura	ıs elevada	as. La r	eacció	n es: ($D_3 + 1$, 111011 10 -	JO (IN → (O) qu O₂ + N	с ргом Ю2	ene de	ias e	1111510	1163	ue 105
	Si 0.740 g de																
	0 /	,															
20.	¿Qué masa (A) 0.709 g		da en gra	(B) 1.02		produ	icira?	(C) (0.909	<u> </u>			(D) 1	.270 g			
	(A) 0.703 g			(0) 1.02	<i>r</i>			(0)	7.303	9			(D) I	. <u>210 g</u>			
21.	¿Qué cantid		activo en				moles)					izar la r					
	(A) 0.0099	moles		(B) 0.01	34 mol	les		(C) (0.0069) mole	es		(D) 0	.0000 r	noles	<u> </u>	
	22. ¿Cuál es	s el coefic	ciente est KMnO		rico pa HCl	ra el a →	gua que MnC			orrec	tamen Cl ₂		juiente	ecuaci	ón qu	ıímic	a?
	(A) 2			(B) 8				(C)			J12		(D) 1	6			
					_	_		• • •									
	La argentoja															com	ponen

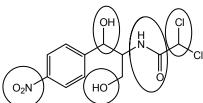
(C) H₆AgFe₃S₂O₁₄

(D) H₆AgFe₃SO₁₆

(B) H₅Ag₂Fe₃S₂O₁₈

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE HIDALGO EXAMEN DE PRESELECCIÓN-OLIMPIADA ESTATAL DE QUÍMICA **NOVIEMBRE 30, 2013**

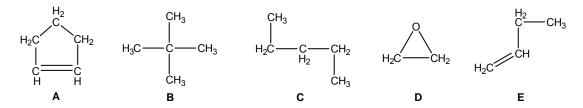
	24. Un compuesto puro en forma de sólido cristalino blanco, se disuelve en agua dando un pH básico; si se le agrega áci clorhídrico concentrado puede desprender un gas, ¿cuál podría ser este sólido?					
	(A) NaOH	(B) NaNO ₃	ai poui	(C) Na ₂ CO ₃		(D) Na ₃ PO ₄
	in un castillo el rey convoca a los caballeros para tomar decisiones importantes sobre el futuro del reino, para poder intrar tienen una contraseña secreta. Existe un espía de un reino enemigo que se esconde cerca de la puerta para tratar e averiguar la contraseña. El primero en llegar es el caballero inteligente, y en la puerta el guardia dice: veinticuatro, a que el caballero divertido responde: doce, y puede pasar. Al rato llega el caballero prudente, el guardia dice: ocho, y el aballero responde: cuatro, y puede pasar. Llega el caballero valiente, el guardia dice: dieciocho, a lo que le responde: ueve, y pasa. El espía cree saber la contraseña y toca la puerta, el guardia dice: cuatro y el espía dice: dos. mediatamente lo arrestan. ¿Cuál era la contraseña correcta?					
	(A) 8	(B) 6		(C) 5		(D) 4
26. En la ecuación para la reacción nuclear: ${}^{10}_{5}B + {}^{4}_{2}He \rightarrow {}^{13}_{7}N + X$ ¿qué es X?						
	(A) Positrón	(B) Protón		(C) Neutrón		(D) Electrón
27.	La fórmula para la base co	njugada de la especie quím	ica C₂H	I ₅ OH es:		
	(A) C ₂ H ₅ O	(B) C ₂ H ₆ O		(C) C ₂ H ₅ OH ⁺		(D) C ₂ H ₅ O ⁻
28.	¿cuál es la concentración r		isolvier	_	H₂O e	n 500mL de agua destilada,
	(A) 0.05 M	(B) 0.16 M		(C) 1.60 M		(D) 7.20 M
29. Una muestra de 9.670 g de hidróxido de bario se disolvió y diluyo hasta la mar necesitaron 11.56 mL de esta solución para neutralizar 25.0 mL de una concentración expresada en molL ⁻¹ de la solución de ácido.						
	(A) 0.1045 molL ⁻¹	(B) 0.418 molL ⁻¹		(C) 0.1650 molL ⁻¹		(D) 0.209 molL ⁻¹
	agua hasta el nivel del afo 250 mL al cual se le agreg neutralizar el ácido conteni	oro. Se toman 20.0 mL de la an 25.0 mL de agua. ¿Qué v do en el matraz Erlenmeyer	soluci volume	ón así preparada y se vid n (expresado en mL) de l	erten e	z de 500 mL y se diluye con en un matraz Erlenmeyer de (ac) 0.10 M se necesita para
	(A) 4.83 mL	(B) 9.66 mL		(C) 2.42 mL		(D) 13.06 mL
31.	¿Qué volumen de NiCl ₂ 3 l	M y qué volumen de NiCl ₂ 0.	5 M se	deben mezclar para obte	ner 2	L de NiCl ₂ 1.5 M?
	(A) 500 mL de NiCl ₂ 3 M y 1500 mL de NiCl ₂ 0.5	y (B) 600 mL de NiCl ₂ 3	ВМу	(C) 700 mL de NiCl ₂ 3 M 1300 mL de NiCl ₂ 0	Иy	(D) 800 mL de NiCl ₂ 3 M y 1200 mL de NiCl ₂ 0.5 M
	neutralizó con 22.4 mL de de la reacción de óxido d $mol \cdot L^{-1}$?	NaOH _(ac) 0.0122 M. Suponi	endo q	ue el ácido presente era oncentración de ácido er	ácido	ró que 100mL de muestra se sulfuroso [H ₂ SO ₃] (producto gua de lluvia, expresado en
	(A) $1.37 \times 10^{-3} \text{molL}^{-1}$	(B) 1.37 × 10 ⁻⁴ molL ⁻¹		(C) 1.37 × 10 ⁻¹ molL ⁻¹		(D) 2.74 × 10 ⁻³ molL ⁻¹
33.		olecular de 158 g/mol. ¿Cuá				
	(A) 0.100 M de KMnO ₄	(B) 1.00 g de KMnO ₄ por L	(C	C) 100 mg de KMnO ₄ por		(D) 1 × 10 ²² moléculas de KMnO ₄ disueltas en un litro
34.	¿Cuál de las siguientes ase	x (no balanceada) tiene luga everaciones es cierta?				Mn ²⁺ + Cl ₂
	(A) Cl ₂ es el agente reduc	ctor (B) Cl ⁻ es el agente re	eductor	(C) El MnO ₄ se oxida	1	(D) El Cl ⁻ se reduce
	equilibrio con Ba(OH)2 sólio	do?		·		ción saturada de Ba(OH)₂ en
	(A) Se disuelve más Ba(OH) ₂	(B) La concentración de bario aumenta		e precipita parte del a(OH)₂ disuelto		La concentración de bario en la disolución no se altera


UNIVERSIDAD AUTÓNOMA DEL ESTADO DE HIDALGO EXAMEN DE PRESELECCIÓN-OLIMPIADA ESTATAL DE QUÍMICA NOVIEMBRE 30, 2013

36.	na forma de expresar la concentración de una disolución es empleando la <i>molalidad</i> (m); esta unidad de concentración de define como el número de moles de soluto por kilogramo de disolvente (mol·kg ⁻¹). ¿Cuál es la molalidad de una solución que contiene 17.1 g de alcohol laúrico, C ₁₂ H ₂₅ OH, en 148 g de etanol como disolvente?						
				0.116 mol·kg ⁻¹			
37.	¿Cuál es el valor del pH de 0.0135M y se aforan a 50 mL?		25 mL de HCI 0.02563 M se	mezclan con 17 mL de HCl			
	(A) 3.46	(B) 1.76	(C) 1.58	(D) 1.41			
38.	Un frasco de 350 mL de un m (58.3 g/mol). Calcular los gran del medicamento en el estóma	nos de ácido clorhídrico (36.5					
	(A) 5 g	(B) 3 g	(C) 2 g	(D) 1 g			
39.	¿Cuál propiedad física la perm						
	(A) Fuerza de cohesión	(B) Fuerzas de adhesión	(C) Tensión superficial	(D) Respuestas A y B			
	La reacción de hidruro de litio o Durante la segunda Guerra Mu accidente en el mar, las tableta con hidrógeno gaseoso. ¿Qué 0.97 atm y 12°C?	$\text{LiH}_{(s)} + \text{H}_2\text{O}_{(l)} \rightarrow$ Indial, los pilotos de EEUU llev is de LiH reaccionarían con el a	LiOH _(ac) + H _{2(g)} aban consigo tabletas de LiH. I agua de mar y se llenarían sus	chalecos y botes salvavidas			
	(A) 1.35 g	(B) 2.70 g	(C) 1.00 g	(D) 1.79 g			
41.	Imagina que vives en una cab (considera que se comporta ic gracias al calentamiento produ es igual a la presión exterior (s L) de aire será expulsado de la (A) Aprox. 4000 L	lealmente) es de 10°C durant icido por el sol. Naturalmente, supón que la presión se mantie	e la mañana, alcanzando un n la cabaña no esta sellada y, p ene constante durante el día). ¿	náximo de 18°C por la tarde, or lo tanto, la presión interior			
	La corriente que circula en una de un coulomb (C) que pasa o celda electroquímica circula ur circuito cada hora son:	ada segundo por un punto de	l circuito. La carga de un elect	rón 1.6 × 10 ⁻¹⁹ C. Si en una			
	(A) 3.125 × 10 ¹⁸	(B) 1.125 × 10 ²²	(C) 1.125 × 10 ¹⁸	(D) 3.125 × 10 ²²			
43.	La combustión del propano (C ¿Qué masa de propano (en capacidad calorífica del agua =	gramos) debe quemarse para					
	(7.1) 10.0 g	(2) 20.0 g	(6) 10.0 g	(2) 00.0 g			
44.	Calcula la entalpía de combus la energía biológica, dada por a Considera las siguientes entalp	al siguiente reacción de combu $1.02M_{\odot}$ $1.00M_{\odot}$ $1.00M_{\odot}$	ıstión: CO _{2(g)} + 10 H ₂ O _(g) + 2 N _{2(g)}				
	combustión.	$C_{(grafito)} + O_{2(g)} \longrightarrow$	$CO_{2(g)}$ $\Delta H_f^0 = -393.$				
	2 C _(grafito) + 5/2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ll} 2\; H_2 O_{(l)} & \qquad \Delta H_f^0 \; = \; -285. \\ C_2 H_5 O_2 N & \qquad \Delta H_f^0 \; = \; -537. \end{array}$	8 kJmol ⁻¹			
	(A) 2,426.7 kJmol ⁻¹	(A) -2,428.2 kJmol ⁻¹	(B) -1,216.5 kJmol ⁻	¹ (C) 142.1 kJmol ⁻¹			
45.	Para el siguiente equilibrio en o Para favorecer la desaparición	disolución PbCl₂↓ + 4 HCN	⇒ Pb(CN) ₄ ²⁻ + 2 Cl ⁻ + 4 F				
	(A) Aumentar la	(B) Disminuir la	(C) Aumentar la	(D) Aumentar la			
	concentración de HCN	concentración de HCN	concentración de Cl⁻	concentración de Pb ²⁺			

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE HIDALGO EXAMEN DE PRESELECCIÓN-OLIMPIADA ESTATAL DE QUÍMICA NOVIEMBRE 30, 2013

46. En las estructuras de las moléculas orgánicas es posible encontrar diferentes tipos de átomos de carbono, primarios, secundarios, terciarios y cuaternarios. En la estructura siguiente están marcados algunos átomos de carbono, indica a que tipo de átomos de carbono corresponden


- (A) **a**, **b** son secundarios y **c**, **d** terciarios (B) **a** primario, **b** secundario, **d** terciario y **c** cuaternario y **c** cuaternario (C) **a** primario, **b** terciario, **d** terciario, **d** secundario y **c** cuaternario y **c** primario
- 47. El cloranfenicol es un antibiótico de amplio espectro y que presenta cierta toxicidad. Su estructura se muestra a continuación, en donde se señalan algunos grupos funcionales. Indica el inciso que menciona a los grupos funcionales señalados en la estructura

(A) Amina, haluro, éter, alcohol, ciano

(B) Amina, haluro, alcohol primario, alcohol secundario, amina, haluro

Considere las siguientes estructuras orgánicas para las preguntas 48 y 49.

48. Son compuestos con enlaces múltiples.

(A) A, B y C (B) B y C (C) A y B (D) A y E

49. Son compuestos con estructuras no ramificada.

(A) A, C, D y E (B) A, C y E (C) D y E (D) A y B

50. ¿Qué figura tiene un patrón diferente a las demás?

